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This paper is concerned with quasi-stationary potential distributions
in one-dimensional ion-electron currents close to an emitting surface.
It is assumed that the part played by near collisions can be neglected.
Three types of regimes unstable with respect 1o slow changes in the
boundary conditions have been found. The instability is attributable
to the feedback created by slow particles reflected to the emirtter by
potential barriers in the Debye layer close to the emitter.

Problems of the stability of stationary oscillations of potential in
relation to rapid fluctuations occurring in a particle flux have been
considered by a number of authors in the hydrodynamic {1~3] and
kinetic [3-7] approximations. Reference [8] gives a classification of
the stationary one-dimensional potential distributions in electron~ion
fluxes emitted from a surface (on the assumption that the role of
near collisions can be neglected),

Below, we shall investigate the instabilities in quasi-stationary
ion-electron fluxes that develop due to feedback between the emitter
field Eo and the flow of particles to infinity j; at fixed initial ion and
electron velocity distribution functions fg(v) and foe(v) and a fixed
value of the current j, supplied to the emitter by the power source.
The feedback is attributable to slow particles reflected to the emitter
by potential barriers. '

Instabilities of the first and second types due to the absence of
stationary regimes at adjacent values of E; develop during a time of
the order of 1/w, (wy is the plasma frequency), since the number of
reflected particles responsible for feedback is comparable with the
total number of particles.

Instability of the third type is characteristic of those potential
distributions when slow particles leaving the emitter are first accel-
erated and only then retarded and reflected to the emitter. In par-
ticular, instability is observed in the case of a homaogeneous ion-
electron flux with zero potential relative to the emitter in the pres-
ence of particles of the same sign with energies close to zero. The
development time for an instability of the third type may substan-
tially exceed 1/wy, if the number of accelerated slow particles is
relatively small.

In §1 the form of the approximate system of equations is estab-
lished for the case of slow oscillations of the boundary conditions in
time, in §2 solutions of this system are investigated.

We shall introduce certain basic notation: x is the distance from
the emitting surface, t istime, E is the electric field, ¢ is the elec-
trostatic potential with reversed sign, m, -e are the electronic mass
and charge, ¢ is the electron-ion mass ratio, v is the particle velocity
in the direction of the x axis, vim, Vem are the minimum initial ve-
locities of ions and electrons, starting from which the particles escape
to infinity, - ¢y, Pem are the minimum and maximum values of
the potential.

§1. Let the time scale 7, given by the variation of
the boundary conditions in time, be much greater than
1/wy. For simplicity, we shall consider the case with
fixed ions of constant density nj,

We shall start from the system of equations
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with boundary conditions

Hz, 0,00 = fo (v, 9

E (z,t) = E, (1), at z=0.

Here f(x, v, t) is the electron distribution function,
We introduce the dimensionless quantities
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Here v° is the velocity scale. The quantities df/dt,
v'dft/dx!, f' are of the same order. Substituting (1.2)
into (1.1) and omitting the primes from the new vari-
ables, we obtain-
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Here € is a small parameter equal to 1.8 . 10737/
/nit/?, if T is measured in seconds, and nj in cm™%,
Transferring the first term in the kinetic equation
to the right side and formally integrating the equation
as inhomogeneous along the characteristics, we ob-
tain the kinetic equation in the form
F(@, v, t) = f (2, v, t)—egé’i—?g;(z’, o) 1)
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Consequently, when xe « 1 it is possible to rep-
resent the solution in series form:
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in powers of the parameter xe (or x/1v°, if x is in
cm, v°in em/sec, and T in sec),

From the equations of system (1.3) there follows
the relation
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where

C(t)= E"’“) S/o(u,t)z-wv.

—Q0

Substituting (1.5) in (1.6), we obtain
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Thus, close to the emitting surface, when xe « 1
(in this case x is reckoned in Debye radii), it is pos-
sible to use the relation
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which is the integral of the zero-th-approximation
system
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In exactly the same way, it is possible to show
that if the motion of the ions is taken into account with
& <« u, when the energy of the ions is comparable with
the height of the potential barrier, close to the emit-
ter (xe « 1) it is possible to use the zero-th-approxi-
mation system

v%(z,v,t)——E(m,t)%f—vﬁ(x,v,t) =0,

v%(x, v, 1) + uk (2, t)%%(z, v, ) =0, (1.10)
?E;%"): S filz, v, t)do — & felz, v, )dv,

with the boundary conditions
E(z,t)y =Ey(t), fe(z, v, t) = fo (0, 1),

filz, v, t) = fo: (v, 1) at z=0.

% @
Fig. 1

Here f; and f¢ are the ion and electron distribution
functions, and as density scale instead of the constant
n; we take the average density of the ions.

If the energy of the ions is sufficiently large, their
density nj does not depend on the potential distribu-
tion (nj = nj(t)) and it is possible to use relations (1.8)
and (1.9) if xe <« 1; in this case the scales in (1.2),
including nj, will, like nj, be slowly varying functions
of time (1 <« 1/w).

§2, System (1.10) has the integral
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analogous to the integral (3) of system (1) in refer-
ence [8] for the stationary case. At each moment of
time t; the potential distribution is stationary for giv-
en E, (8,), fo (v, ty), fo: (v, 1), and the time distribution
©(x, t) is a continuous transition from one stationary
potential distribution to another. This quasi-station-
arity of the distribution ¢(x, t) is disturbed if for giv-
en E;(2), fee(v, 1), fo:(v, 1) a stationary distribution ¢(x)
does not exist or if the boundary conditions change
too rapidly (T = 1/w;). We shall ascertain what con~
ditions can lead to disturbance of quasi-stationarity.
We write the law of conservation of emitter charge

dE, . 3 .
a3 = Jee—Joi + Jx.
oo [e o]
(jer S Foe¥ dv, Joi = S fm-vdv>, (2.2)
Vem im

Here ji is a certain compensation current supplied
to the emitter from outside. It follows from (2,2) that
for quasi-stationary conditions the total current I=
= jpe = Joi + j must be very small. Otherwise rapid
recharging of the emitter would occur in a time
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Consequently, for some random small variation of
the current I the electron-ion current jy = jy; — ise
must change so that the equality

Joe = Joi + =0 2.3)
is not disturbed. A change in the current j, takes place
at the expense of a fluctuation of E, due to the escape
of charge from the emitter, and a corresponding
change in vem, Vim at given values of fie(v), fi(v),
since the functions fj(v, t) (v > 0) vary slowly in time
as a condition of the problem. If I = 0, and E, varies
randomly, then this produces a change in g L.e.,
again leads to a change in I and the problem reduces
to the previous one.

We shall call a regime unstable if a small change
in I can produce a value of E; at which for given fje(v),
Joi(v) a stationary regime does not exist, and also if
such a stationary regime does exist, but corresponds
to a current j, that increases I—then any fluctuation
of I, however small, can produce an automatic in-
creage of I to finite values, which also means the dis-
turbance of quasi-stationparity. By a stable regime we
shall understand a regime in which small fluctuations
of I cause changes in E, that affect the current j; in
such a way that 1 again vanishes.

The change in I ean be conveniently represented
as a small change in ji leading to a change in the
charge on the emitter, and the problem consists in
whether the current j; will then change so as to com-
pensate the current ji.

The absence of stationary regimes at similar val-
ues of E; leads to instabilities of two types. For sim-
plicity, we shall take the case E, > 0 without slow
ions. The first type of unstable regimes is shown in
Fig. 1 (Y = E¥/2, for graphs of Y(¢|x) see [8]). Here,
since jj; does not depend on the fluctuations of E,,
with decrease in jik there should be an increase in
Joes 1.€., @em must decrease in order fo transmit
some of the slow electrons to infinity,

However, for given f;i(v), fye(v) 2 decrease in ¢em
causes a decrease in Y(¢) over the entire interval (0,
¢em), i.e., in the neighborhood of ¢| Y must assume
negative values, which is impossible, Thus, the re-
gime of Fig. 1 is unstable with respect to a decrease
in jg.

The second type of unstable regimes is associated
with disturbance of the condition

dy <0

¢ o=y @.4)

necessary for Y to be positive in the neighborhood of

Pem-
We shall consider the function (Fig. 2)

Z(qais S foi @) V7 + 2p vde + S—io,(v)]fv’-——Zq)vdv,

Yim Vie

which at the point ¢om possesses the same derivative
as Y(¢); consequently, if for a given ¢gy, at specified

“ foelv), foi(v) the condition

az <0 ©.5)

MRS

is not satisfied, then a stationary regime with given
Pem> foer foi is impossible. Regimes with a monoton-
ic potential (dY/d¢ = 0 at ¢ = pem, Fig. 3) are stable
only if wem lies at a point of inflection of Z(p), when
dZ/d¢ < 0 close to @em (¢; in Fig. 2), and unstable
if @em lies on an extremum of Z{g) or at a point of
inflection with dZ/d¢ > 0 close to Yem (¥2 @3, @4,

@5 in Fig. 2),

Instability of the third type is associated with the
presence of slow ions (when E; > 0) and is expressed
in the fact that a small change in I corresponds to a
small change in E, that increases the uncompensated
current I and leads to its rapid growth, If we consider
the relation j, (E,) for given fyc(v), fpi(v), then an in-
stability of the third type will occur at those E, for
which

djy [ dEq < 0, 2.6)

i.e., for example, a small additional escape of ions
from the emitter due to a small increase in j will
produce a decrease in E; and hence a further increase

in jo.

Fig. 4

We shall compute dj,/dE;. We have

jo = S foi () vdv — S foe (v) vdv. 2.7
Pim Vem
Hence
djo = — foi (Vim) WdPim - foe (Verm) Pern » (2.8)

Pim = I‘v—lvim’ 12, Porn = Vem® / 2.
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The condition Y{¢om) = Y(—@jm) = 0 for the case
Ey > 0 means (see 2.1)

0= S foo (2) Vo — 0om® vdr +
+ pt Sfd (U) Vlv’ + Woem? vdv +
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In relations (2.9) and (2. 10) the expression for
C(Ey, Vem, Vim) has the form

Bom o)
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[]
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+pt S fuvidy 4+ pt Sf.,,' v’dv).
3 ¢

Since these equalities must be preserved when
Yems ¥im» Fo change, we can obtain from them the
differentials

EdBy = [— T (9en) + oo (vem) vom | dim — ) 12
— fot (24m) (V Virm® + BOem® — Vim) dPim ,( 12

EQE, = fous (Vom) (va. + W 0im? - Vem) dPom +

2.13)
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Expressing d@em, d¢jm in terms of EdE; and sub~
stituting the obtained expressions in (2.8), we find
the relation between dj, and dE; (for the case E; > 0)

By = EolBo [ fumfuns 0+ 1)+ oY o+ F ot |

X[(_— Y;m+ femPem) (Yiml + fimvim) +
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Similarly, for E; > €

djo = EEo[~fimfenss 6 +1) & Bfen¥ o’ + fon ]
X[*' Yom + femPem) (YVim + fimbim) +

. =3
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Since Yiy = 0 and Y]y, = 0 for stationary regimes,
we note that the denominators of (2.13)~(2.17) are non-
negative, while the numerators may be bath positive
and negative. For a stable regime the condition

djy [ dEq > 0 2.18)

must be satisfied.

It is easy to see that if dpgy/d@jy = 0, then (2,18)
is known to be satisfied. Condition (2.18) is not satis-
fied if femm = 0, fim = 0 for E; > 0 or fem # 0, im= 0
for E, < 0 even in quite similar cases, {fgm =0,
fim = 0). Then

&y Bfim - E,
i =B = B0 @9
dio fem — By
& =Py = B (2.20)
Y, Yom )
v = m + -—F——, Vg° == Vom— —ff; .

A typical graph of jy(E,) is presented in Fig, 4.
The segments AC, A'C' are unstable, since between
the points A, A' and the points B and B, respective-
ly, there is a jump in the curve, and similarly between
points C, C'and D, D',

In conclusion, the author thanks A. I, Morozov for
his interest and useful advice,
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